
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS

Use of HyperNEAT Encoding

for Hybrid Artificial Neural Networks

Prague, 2015 Pavol Sekereš



Declaration

I declare that I have written my Diploma Thesis myself and used only the sources

(literature, project, SW etc.) listed in the enclosed bibliography and the Appendixes.

i



Acknowledgement

I would like to thank Ing. Jaroslav Vı́tk̊u for his time, significant help and guidance.

In addition I would like to thank Prof. Assoc. Pavel Nahodil for help and experienced

advices.

ii



Abstrakt

V posledńıch letech byl zaznamenán významný posun ve vývoji hybridńıch modulárńıch

systémů, s ćılem poskytnout elegantńı řešeńı pro rozličné problémy z oblasti umělé in-

teligence. Tyto hybridńı umělé neuronové śıtě svou využitelnost́ı předč́ı umělé neu-

ronové śıtě v mnoha oblastech výzkumu umělého života, proto jsou v posledńıch letech

předmětem studij́ı vědc̊u z této domény. K tomu, aby hybridńı systém fungoval správně,

je potřeba nalézt vhodnou a pokud možno optimálńı topologii propojeńı uzl̊u v systému.

Na optimalizaci topologie umělých neuronových śıt́ı existuje nesčetný počet optimal-

izačńıch algoritmů, ale jen část z nich byla navrhnuta tak, aby fungovala i pro hybridńı

neuronové śıtě. Analytická řešeńı jsou pro optimalizaci výpočetně náročná, a proto se

vědci inspiruj́ı př́ırodou a navrhuj́ı evolučńı optimalizačńı algoritmy. Algoritmus Hyper-

NEAT ( Hypercube-based Neuro-evolution of Augmented Topologies ) představuje jeden

z nejnověǰśıch algoritmů v oblasti neuro-evoluce založené na nepř́ımém kódováńı jedince

v populaci.

Ćılem této diplomové práce je navrhnout a implementovat rozš́ı̌reńı algoritmu Hy-

perNEAT pro hybridńı umělé neuronové systémy. Algoritmus bude implementován t́ım

zp̊usobem, aby jej bylo možné propojit s frameworkem hybridńıch umělých neuronových

śıt́ı, který navrhl a implementoval vedoućı této diplomové práce Ing. Jaroslav Vı́tk̊u

v spolupráci s doc. Pavlem Nahodilem z katedry kybernetiky Fakulty Elektrotechnické

ČVUT v Praze. Implementovaný algoritmus bude ale zároveň plně funkčńı pro libovolnou

hybridńı umělou neuronovou śı̌t s př́ıslušnou evaluačńı funkćı definuj́ıćı optimálńı kvalitu

zapojeńı dané hybridńı neuronové śıtě v konkrétńım prostřed́ı.

iii



Abstract

In the recent years there has been significant upturn in the development of hybrid

modular systems, with the emphasis on solving various problems in the Artificial Intelli-

gence domain. These hybrid neural network systems outperform artificial neural networks

in distinct areas of the computer science research. In order for these systems to function

properly, it is important to interconnect the system’s nodes in valid, or in the best case

optimal topology. Large amount of algorithms for optimization of the artificial neural

networks exist, but not many operate, or have been modified to operate on these hybrid

modular systems. The analytical solutions, are computationaly complex and therefore

scientists design and implement evolutionary optimization algorithms to achieve satis-

factory results. The novel algorithm, representing the state of the art of the indirect

encoding-based neuro-evolutionary algorithms is HyperNEAT algorithm.

The aim of this thesis is to design and implement extension of the HyperNEAT algo-

rithm for evolution of the hybrid artificial neural network systems. The algorithm will

be mainly designed to serve the systems developed using the framework of hybrid neural

network systems proposed by my thesis supervisor, Ing. Jaroslav Vitku in cooperation

with Prof. Assoc. Pavel Nahodil from the Faculty of Electrical Engineering of CTU

in Prague. The algorithm will also operate with arbitrary hybrid modular system with

respective evaluation function, which describes the performance of the system depending

on the evolved topology of the given network.

iv



v



Contents

List of Abbreviations viii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Foundation 4

2.1 Hybrid Artificial Neural Network Systems . . . . . . . . . . . . . . . . . 4

2.1.1 Definition of the Hybrid Artificial Neural Network Systems . . . . 4

2.1.2 Motivation for Modular Architectures . . . . . . . . . . . . . . . . 5

2.2 Methods of Design of Artificial Neural Networks . . . . . . . . . . . . . . 9

2.3 Compositional Pattern Producing Networks . . . . . . . . . . . . . . . . 10

2.3.1 Developmental Encoding . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Encoding Natural Patterns . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Temporal Unfolding and Local Interactions Approximation . . . . 12

2.4 NeuroEvolution of Augmenting Topologies . . . . . . . . . . . . . . . . . 14

2.4.1 Competing Conventions . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Protecting Innovation with Speciation . . . . . . . . . . . . . . . 17

2.4.3 Initial Population and Topological Innovation . . . . . . . . . . . 18

2.4.4 Genetic Encoding and Historical Markings . . . . . . . . . . . . . 18

2.4.5 Mutation and Crossover in NEAT . . . . . . . . . . . . . . . . . . 18

2.4.6 Speciating and Shared Fitness in NEAT . . . . . . . . . . . . . . 22

2.5 Hybercube-based NeuroEvolution of Augmenting Topologies . . . . . . . 23

2.5.1 Mapping Spatial Patterns to Connectivity Patterns . . . . . . . . 23

2.5.2 Types of Substrate Configuration . . . . . . . . . . . . . . . . . . 25

vi



2.5.2.1 State-Space Sandwich Substrate . . . . . . . . . . . . . . 25

2.5.2.2 6-Dimensional Hypercube Substrate . . . . . . . . . . . 26

2.5.3 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Algorithms Proposed and Tested 28

3.1 Hybercube-based NeuroEvolution of Augmenting Topologies for Hybrid

Artificial Neural Network Systems . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Sandwich Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Encoding Additional Inputs and Outputs of each Neural Module

as a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Encoding Additional Inputs and Outputs of each Neural Module

as a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 6-Dimensional Hypercube Substrate . . . . . . . . . . . . . . . . . . . . . 32

4 Algorithm Implementation and Testing 36

4.1 HyperNEAT for HANNS Algorithm Implementation . . . . . . . . . . . . 36

4.1.1 Proposed Library Extension . . . . . . . . . . . . . . . . . . . . . 37

4.2 Experiments Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Experiment 1 - Implementing XOR Logic Function Using HANNS . . . . 39

4.3.1 Experiment 1 - A) Simple HANNS XOR Problem . . . . . . . . . 40

4.3.2 Experiment 1 - B) Medium HANNS XOR Problem . . . . . . . . 43

4.3.3 Experiment 1 - C) Large HANNS XOR Problem . . . . . . . . . . 46

4.4 Experiment 2 - Motivation-driven Reinforcement Learning HANNS De-

scription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 HyperNEAT Parameters Setting Justification . . . . . . . . . . . 50

4.4.2 Experiment 2 - A) Smaller Gridworld . . . . . . . . . . . . . . . . 52

4.4.3 Experiment 2 - B) Bigger Gridworld . . . . . . . . . . . . . . . . 56

4.4.4 Reinforcement Learning Experiments Best Found Genomes and

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Conducted Experiments Discussion & Conclusion . . . . . . . . . . . . . 63

5 Thesis Conclusion and Contributions 64

Bibliography 68

vii



List of Abbreviations

DNA Deoxyribonucleic acid

MIMO Multiple Input Multiple Output

AHNI Another HyperNEAT Implementation

MNN Modular Neural Networks

HANNS Hybrid Artificial Neural Network Systems

TWEANNs Topology and Weight Evolving Artificial Neural Networks

CPPN Compositional Pattern Producing Network

NEAT Neuro-evolution of Augmented Topologies

HyperNEATHypercube Neuro-evolution of Augmented Topologies

EA Evolutionary Algorithm

RL Reinforcement Learning

ANN Artificial Neural Network

AI Artificial Intelligence

ASM Action Selection Mechanism

CTU Czech Technical University in Prague

ROS Robotic Operating System

viii



List of Figures

2.1 HANNS subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 HANNS system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 CPPN-generated Regularities . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Function Produces a Phenotype . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 CPPN example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Competing Conventions Problem . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Mapping of Genotype to Phenotype in NEAT . . . . . . . . . . . . . . . 19

2.8 Mutation in NEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Crossover in NEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Connectivity Patterns Produced by Connective CPPNs . . . . . . . . . . 24

2.10 Hypercube-based Geometric Connectivity Pattern Interpretation. . . . . 24

2.12 Substrate Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.13 Organization of the HyperNEAT substrate in the robot movement example. 26

2.14 CPPN for Six-Dimensional Hypercube. . . . . . . . . . . . . . . . . . . . 27

3.1 HANNS Implementing Reinforcement Learning Agent Architecture . . . 29

3.2 HyperNEAT for the HANNS Using Sandwich Substrate, Vector Encoding 31

3.3 HyperNEAT for the HANNS Using Sandwich Substrate, Matrix Encoding 33

3.4 HyperNEAT for the HANNS Using 6-Dimensional Substrate . . . . . . . 35

4.1 Evolutionary cycle of the HyperNEAT algorithm. . . . . . . . . . . . . . 37

4.2 Exclusive-OR HANNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Exclusive-OR HANNS input/output spreading in the substrate . . . . . . 40

4.4 Exclusive-OR Simple HANNS Maximal Fitness . . . . . . . . . . . . . . 42

4.5 Exclusive-OR Simple HANNS Mean Fitness . . . . . . . . . . . . . . . . 42

4.6 Exclusive-OR Simple HANNS Distinct Species Count . . . . . . . . . . . 43

4.7 Exclusive-OR Medium HANNS HyperNEAT Maximal Fitness . . . . . . 44

4.8 Exclusive-OR Medium HANNS Basic EA Maximal Fitness . . . . . . . . 44

ix



4.9 Exclusive-OR Medium HANNS HyperNEAT Mean Fitness . . . . . . . . 45

4.10 Exclusive-OR Medium HANNS Basic EA Mean Fitness . . . . . . . . . . 45

4.11 Exclusive-OR Big HANNS HyperNEAT Maximal Fitness . . . . . . . . . 47

4.12 Exclusive-OR Big HANNS Basic EA Maximal Fitness . . . . . . . . . . . 47

4.13 Exclusive-OR Big HANNS HyperNEAT Mean Fitness . . . . . . . . . . . 48

4.14 Exclusive-OR Big HANNS Basic EA Mean Fitness . . . . . . . . . . . . 48

4.15 Hand-wired Motivation-driven Reinforcement Learning HANNS . . . . . 51

4.16 HyperNEAT Setup for Reinforcement Learning . . . . . . . . . . . . . . 52

4.17 Gridworld 5× 5 for Reinforcement Learning Experiment . . . . . . . . . 53

4.18 5× 5 Grid World - Maximal Fitness Comparision . . . . . . . . . . . . . 54

4.19 5× 5 Grid World - Mean Fitness Comparision . . . . . . . . . . . . . . . 54

4.20 5× 5 Grid World - HyperNEAT Species count . . . . . . . . . . . . . . . 55

4.21 5× 5 Grid World - HyperNEAT Maximal and Minimal Species Count . . 55

4.22 Gridworld 10× 10 for Reinforcement Learning Experiment . . . . . . . . 56

4.23 HyperNEAT QLambda 10× 10 Grid World - Maximal Fitness . . . . . . 57

4.24 Basic Evolutionary Algorithm QLambda 10 × 10 Grid World - Maximal

Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.25 HyperNEAT QLambda 10× 10 Grid World - Mean Fitness . . . . . . . . 58

4.26 Basic Evolutionary Algorithm QLambda 10× 10 Grid World - Mean Fitness 58

4.27 HyperNEAT QLambda 10× 10 Grid World - Species Count . . . . . . . 59

4.28 HyperNEAT QLambda 10× 10 Grid World - Species Size . . . . . . . . . 60

x



List of Tables

4.1 Best found genomes in Exclusive-OR Experiment . . . . . . . . . . . . . 41

4.2 HyperNEAT parameters in Exclusive-OR Experiment . . . . . . . . . . . 49

4.3 HyperNEAT parameters in Reinforcement Learning Experiment . . . . . 60

4.4 Best genomes found in the Grid World experiments . . . . . . . . . . . . 61

xi



Chapter 1

Introduction

Training large Artificial Neural Network for solving great variety of tasks, or single difficult

task can be computationally too complex. Even if we succeed in training such network,

the whole system is then viewed as a black box and we do not know which part of the

network is responsible for solving concrete subtask of the complex problem. These are the

key reasons for the recent upturn in the research of the Modular Hybrid Neural Systems

and study of their capabilities, when solving concrete problems.

Besides the present real-world problems, which these systems tackle, Hybrid Neural

Network Systems play great role in the present research of the General Artificial Intel-

ligence capable of solving arbitrary task solvable by biological brain. Scientist believe,

that biological brain is modular in the different spatial scales and that different parts of

brain specialize on slightly different tasks (Mcgarry, 1999), which makes Modular Hybrid

Neural Systems promising in the development of brain-like structures.

When designing Hybrid Neural Systems, just as Artificial Neural Networks, the learn-

ing algorithms play significant role in the final performance of the structure. The opti-

mization of the network topologies can bring up the usability of the network. Therefore

it makes sense to experiment with different optimization techniques and develop new

approaches. Recently, the biologically inspired indirect encoding neuro-evolutionary ap-

proaches have been studied and utilized for the learning of the Artificial Neural Net-

works. The HyperNEAT (Hypercube-based Neuro-evolution of Augmented Topologies)

algorithm builds on the top of these approaches and many experiments showed, that it

is capable of solving certain learning tasks with enhanced performance compared to the

other techniques (Stanley, 2009).

In this thesis, I study the design of the HyperNEAT algorithm and HANNS (Hybrid

Artificial Neural Network Systems). With the strong theoretical background of these

1



CHAPTER 1. INTRODUCTION 2

state-of-the-art algorithms, I develop the extension of the HyperNEAT algorithm focused

on the learning of the topology of arbitrary HANNS. Respective algorithm is then tested

on conducted experiment and compared with other algorithms for learning the topology

of the HANNS. The results are then summarized in the conclusion chapter of the thesis.



CHAPTER 1. INTRODUCTION 3

1.1 Thesis Outline

Here is the brief description of this thesis outline:

Chapter 1 The first chapter provides introduction to the thesis goals and aims of the

Diploma Thesis.

Chapter 2 The second chapter describes theoretical foundation required for understand-

ing the Hybrid Artificial Neural Network Systems and HyperNEAT algorithm in detail.

It also familiarizes reader with the present state-of-the-art for these structures and algo-

rithms.

Chapter 3 The third chapter introduces the algorithms, which were chosen and imple-

mented.

Chapter 4 In the fourth chapter, the conducted experiments for evaluation and com-

parison of the implemented algorithms are described.

Chapter 5 The Fifth chapter contains conclusion and compares the predicted and actual

goal.



Chapter 2

Theoretical Foundation

2.1 Hybrid Artificial Neural Network Systems

Because we aim to design learning algorithm for Hybrid Artificial Neural Network Sys-

tems, we will define them in this section. The capabilities of the Hybrid Artificial Neural

Network Systems have been studied extensively in the recent years. Other scientists re-

fer to them as Modular Hybrid Neural Systems (Mcgarry, 1999) or as Modular Neural

Networks (Auda G., 1999). They have been studied so vastly, because they can be uti-

lized in many different areas, where they provide significant advantages compared to the

ANNs. We will define the HANNS and then discuss the motivation for the study of these

modular architectures.

2.1.1 Definition of the Hybrid Artificial Neural Network

Systems

Hybrid Artificial Neural Network System is a Neural Network, that consists of several

modules, each module carrying out one sub-task of the global task solved by the HANNS.

All modules are functionally integrated. A module can be a sub-structure or a learning

sub-procedure of the whole network. The network’s global task can be any neural network

application, e.g., mapping, function approximation, clustering or associative memory

application (Auda G., 1999).

The example of the module is depicted in the figure above. In general it can have

arbitrary number of inputs and outputs. The whole system has several of such mod-

ules, which are interconnected. In additions there are some external inputs and outputs

4



CHAPTER 2. THEORETICAL FOUNDATION 5

Figure 2.1: Example of the module of the hybrid modular system with 3 outputs and

2 inputs.

defined.

Formally, HANNS is given by set of local inputs and local outputs to the nodes :

In ∈ {in1, ..., inn} , Out ∈ {out1, ..., outn} (2.1)

.

Each output is either external, or connected to some local input. This connection is

defined by the Binary Adjacency Matrix :

A : aij = 1⇔ (ini → inj) (2.2)

That is, whenever the value in matrix is 1, the corresponding input connects to the

corresponding output, and otherwise they are not connected. In addition, each node is

defined by concrete mapping:

M (in1, ..., inn)→ (out1, ..., outm) (2.3)

which provides unique transformation of the node inputs to outputs. To define

HANNS correctly, we must also define which of the inputs and outputs of the system

are external and connect them to the system of nodes.

In the following part, we will describe the motivation for the study of the Modular

Architectures.

2.1.2 Motivation for Modular Architectures

Modular Architectures exhibit certain features, which are useful when designing complex

system for solving, decision making, learning tasks, etc.



CHAPTER 2. THEORETICAL FOUNDATION 6

Figure 2.2: Example of the hybrid modular system. Concretely the SCREEN (Sym-

bolic Connectionist for Robust Enterprise for Natural language) hybrid

system is depicted. It has been developed to learn the acoustics, syntax,

semantics and pragmatics of spoken language. Due to the complexity of

this task SCREEN required an interleaved architecture for learning spoken

language analysis (S. Wermter, 1997).



CHAPTER 2. THEORETICAL FOUNDATION 7

They exhibit modularity attribute. To understand, how modularity can be useful,

let us take as an example human brain. It appears that biological brain is also modular

in different spatial scales. On the smallest scale, synapses are clustered on dendrites

(S. Johannes and Munte, 1996). On the largest scale, the brain is composed of several

anatomically and functionally distinct areas (Hrycej, 1992). Between these two levels,

columnar structures appear 28 with intracolumnar connections (Murre, 1992). The com-

mon belief that the biological brain is modular makes the study of modular architectures

key for the development of artificial brain-like structure capable of solving problems with

similar complexity. It has been and still is one of the great goals of Artificial Intelligence

to study and develop such structures.

Another key feature of these systems is Functional specialization. Different parts

of brain specialize on slightly different tasks. Local and global stimulus perceptions are

handled by parts of the left and right brain-hemispheres, respectively. Therefore modular

architecture, compared to the ANN has certain advantages when developing systems with

functionality of the biological brain (Auda G., 1999).

Competition/Cooperation among the modules. In biological brains, the visual

cortex modules cooperate between each other in certain connectivity patterns to create

overall visions of objects. These observations suggest forms of communication among

modules in order to take the final system’s decision. There are other examples in nature

which suggest, that designing a cooperation scheme can give better performance than

direct summation of all modules capabilities (Auda G., 1999).

Scalability is feature highly appreciated in the computer systems. In brain, scala-

bility provides constant processing time in spite of a range of sizes of its modules. It is

suggested that this is a result of the brain’s highly modular structure (Auda G., 1999).

Extendebility - modular architectures are easily extendable compared to ANNs.

If we want to modify functionality of ANN we need to retrain the whole network. In

Modular Architectures adding another module, or changing single module can modify

the behavior of the system as well.

Learning in Stages is another interesting feature of Modular Architecture. Because

the modules are autonomous, they can be trained separately and generally it is easier to

train single module of Modular System then the whole system at once. This enables the

training of the modules simultaneously, which speeds up the phase in the multi-threaded

environments.

Mixing learning methods - this feature enables us to model systems, where unsu-

pervised learning modules recognize patterns from the noisy and unreadable raw input



CHAPTER 2. THEORETICAL FOUNDATION 8

data from some environment. These modules extract the important features from envi-

ronment and then recognized patterns can be processed by supervised learning modules.

This way, supervised learning modules work with cleaner and processed data and this

can improve their performance significantly. This kind of architecture can be utilized

when designing autonomous agents interacting with artificial environment (Vitku and

Nahodil, 2014).

Task Decomposition enables Modular Systems to solve problem, which is too com-

plex to be solvable at once. A similar approach is used for solving the traveling salesman

problem using a MNN mathematical model (Foo and Szu, 1989).

Loose coupling of the systems is a another property of the HANNS. It is desirable

in certain applications. For example if we use ANN in classification task, the network

will first learn the the easy (nonoverlapping, odd, separable) categories. It will devote

most of its hidden units for them. Due to the high coupling of the neurons there might be

insufficient amount of the neurons for defining the boundary for the difficult(overlapping)

categories. For modular structures, dividing the classification task to separate neural

modules decreases the coupling effect (Auda G., 1999).

Smaller amount of training samples is needed to train the Modular System to be

general, compared to the standard ANN. This can be explained by the fact, that the most

famous theoretical worst-case bound on the number of training samples - VC dimension

(Vapnik and Chervonenkis, 1971) decreases by splitting the network into the modules.

For ANN it is roughly, a linear function to the number of weights. This can be explained

by the fact, that decomposing the objective task over smaller, sparsely-connected, and

less complex modules decreases the connections-per-node ratio

substantially (Auda G., 1999).

Readability is another advantage of modular architecture. Because the system is

divided into modules, we are able to understand more precisely which part of the system

performs concrete sub-task. In contrast to the ANNs, where it can be extremely difficult

to track which group of neurons is responsible for which sub-task.

HANNS also provide improve the speed of learning by eliminating the crosstalk

problem. Spatial crosstalk occurs when the outputs of the network provide conflicting

error information to a single hidden unit in a single iteration. It occurs mainly in ANN’s

with fully connected layers. Temporal crosstalk occurs when the network receives con-

flicting training information over time (iterations), e.g., when the network is forced to

learn several dissimilar functions simultaneously. HANNS prevent the crosstalk by the

decomposition of subtasks into the modules (Auda G., 1999).



CHAPTER 2. THEORETICAL FOUNDATION 9

Because of these and many other reasons it is important to study the capabilities of

the HANNS.

We have defined and discussed the importance of studying the HANNS. In the fol-

lowing section we will explain methods of design of ANN and categorize approach, which

will be developed later in the following chapter.

2.2 Methods of Design of Artificial Neural

Networks

Determining the correct (optimal) topology of the ANN manually is often infeasible when

designing ANN for solving difficult problems. Throughout the years of the research in

Artificial Intelligence, scientists have developed many different approaches and algorithms

for optimization of the network structures. Present methods of design of ANN can be

divided in the following groups :

• Learning Algorithms: In this case, the network has predefined topology (e.g.

feed-forward network) and a local learning rule, which modifies connection weights

between particular neurons. Here can be mentioned supervised learning in feed-

forward network by means of back-propagation algorithm, or unsupervised Hebbian

or competitive learning (Vitku and Nahodil, 2014).

• Topology Optimization Compared to the previous case, the topology of ANN

can be optimized by globally operating optimization algorithm. The topology is

often partially predefined (e.g. to the feed-forward networks) and the Evolutionary

Algorithm (EA) is used to find correct weights (Vitku and Nahodil, 2014).

• Neural Engineering This represents the Top-Down approach in designing neural

systems. Instead of starting from an individual neuron, it works over populations

of neurons. Each population has purpose of solving particular part of the problem

(Vitku and Nahodil, 2014). Here, the qualitative tools are often used to compute

particular connections between neurons and/or between populations of neurons.

These methods are often used in largerscale neural models (H. de Garis and Ruiting,

2010).



CHAPTER 2. THEORETICAL FOUNDATION 10

In following sections we will explain in detail all of the components of the Hyper-

NEAT algorithm. It is neuro-evolutionary optimization algorithm, used for development

and optimization of the topology of ANN. We will utilize this algorithm, to design simi-

lar approach for optimization of connection weights between engineered sub-systems. In

order to explain, how HyperNEAT algorithm works, we will describe all of its features in

details, starting with Compositional Pattern Producing Networks.

2.3 Compositional Pattern Producing Networks

CPPN is type of ANN, which indirectly encodes typically order of magnitude larger pat-

tern. In the following subsections, we will discuss the advantages of the indirect encoding.

We will explain how CPPNs utilize this approach and what is the main difference between

CPPN encoding, and the way these complex patterns are encoded in nature.

2.3.1 Developmental Encoding

In nature, the DNA encodes complex structures on an enormous scale. The genes in

DNA represent astronomically complex structures with trillions of interconnecting parts,

such as the human brain. Despite this fact, DNA does not contain such amount of genes,

only 30 thousand genes encode the entire human body (Zigmond and Squire., 1999).

Inspired by the DNA, the researchers are attempting to achieve the same efficiency in

the representation of sophisticated patterns by studying and implementing developmen-

tal encodings. These encodings map the genotype to the phenotype through a process

of growth from a small starting point to a mature form. A major challenge in this effort

is to find the right level of abstraction of biological development to capture its essential

properties without introducing unnecessary inefficiencies (Stanley, 2007).

Compositional Pattern Producing Networks represent one of these attempts of the com-

puter scientists in the field of Artificial Intelligence to utilize the idea of the developmental

encoding of the order of magnitude larger patterns. Unlike other abstractions, like cellular

growth simulations, Compositional Pattern Producing Networks map to the phenotype

without local interaction. This means, that each individual component of the phenotype

is determined independently of every other component. CPPNs also break the tradition

of temporal unfolding in the developmental encoding research. They achieve the struc-



CHAPTER 2. THEORETICAL FOUNDATION 11

tural relationships which result from a process of development without simulating the

process itself. This enables them to avoid the temporal unfolding and local interactions

(Stanley, 2007).

2.3.2 Encoding Natural Patterns

CPPN is structurally similar to ANN, but generally operates with larger set of activation

functions. Inspired by natural encoding, it is designed to be capable of encoding common

general properties of pattern in nature. These patterns are following:

• Repetition : Multiple instances of the same substructure is a hallmark of biological

organisms. On different scales, the grouping of cells throughout the body and

connection of neurons in the brain, exhibit the repetition of the same motifs in a

single organism. Repetition in the phenotype is also called self-similarity (Bentley

and Kumar, 1999).

• Repetition with Variation : Frequently, motifs are repeated yet not entirely

identical. Each vertebrae in the spine is similar, yet they each have slightly differ-

ent proportions and morphologies (Zigmond and Squire., 1999). Similarly, human

fingers repeat a regular pattern, yet no two fingers on the same hand are identical.

Repetition with variation is abundant throughout all of natural life.

• Symmetry : Often repetition occurs through symmetry, as when the left and right

sides of a body are identical mirror images in classic bilateral symmetry.

• Imperfect Symmetry : While an overall symmetric theme is observable in many

biological structures, they are nevertheless generally not perfectly symmetric. Such

imperfect symmetry is a common feature of repetition with variation. The human

body, while overall symmetric, is not equivalent on both sides; some organs appear

only on one side and one hand is usually dominant over the other.

• Elaborated Regularity : Over many generations, regularities are often elaborated

and exploited further. For example, the bilaterally symmetric fins of early fish

eventually became the arms and hands of mammals, displaying some of the same

regularities (Stanley and Miikkulainen, 2004).

• Preservation of Regularity : Over generations, established regularities are often

strictly preserved. Bilateral symmetry does not easily produce three-way symmetry,



CHAPTER 2. THEORETICAL FOUNDATION 12

and four-limbed animals rarely produce offspring with a different number of limbs,

even as the limb design itself is elaborated (Stanley, 2007).

It has been shown through interactive evolution, that CPPN can encode these patterns

seen in nature. In this process, the CPPNs were evolved to match certain patterns from

the nature to determine, if they are capable of encoding such complex patterns.

Figure 2.3: CPPN-generated Regularities. Spatial patterns exhibiting (a) bilat-

eral symmetry, (b) imperfect symmetry,and (c) repetition with variation

(notice the nexus of each repeated motif) are depicted. These patterns

demonstrate that CPPNs effectively encode fundamental regularities of

several different types (Stanley, 2009).

2.3.3 Temporal Unfolding and Local Interactions

Approximation

As we mentioned earlier, the CPPN does not operate with temporal unfolding and local

interactions, unlike other developmental encodings do. In fact it tries to approximate

these features by function, which is in fact composition of set of functions. It conceives

the phenotype as a distribution of points in a multidimensional Cartesian space. Viewed

this way, a phenotype can be described as a function of n dimensions, where n is the num-

ber of dimensions in the physical world. For each coordinate, the presence or absence of

a point, or its level of expression, is an output of the function that describes the pheno-

type. Although the original pattern has been created through temporal progression and

local interaction it is possible, to represent it through a functional description. Cybenko

(Cybenko, 1989) showed that any function can be approximated by a neural network



CHAPTER 2. THEORETICAL FOUNDATION 13

with single hidden layer. The more neurons in the network, the more accurate the ap-

proximation can be. Thus, any morphology, when viewed as a distribution of particles in

space, is possible to represent as a function without the notion of time (Stanley, 2007).

Figure 2.4: A Function Produces a Phenotype. The function f takes arguments x

and y, which are coordinates in a two-dimensional space. When all the

coordinates are drawn with an intensity corresponding to the output of f

at that coordinate, the result is a pattern, which can be conceived as a

phenotype whose genotype is f. In this example, f produces a triangular

phenotype (Stanley, 2007).

CPPN is capable of approximating function, which approximates the morphological

pattern commonly seen in nature. CPPN outputs these patterns by operating with vari-

ous activation functions. For example, it achieves bilateral symmetry using the gaussian

function. To achieve repetition of the same pattern it utilizes periodic functions like sine.

Linear functions can be employed to produce linear or fractal-like patterns.



CHAPTER 2. THEORETICAL FOUNDATION 14

Figure 2.5: The graph determines which functions connect to which. The connections

are weighted such that the output of a function is multiplied by the weight

of its outgoing connection. If multiple connections feed into the same

function then the downstream function takes the sum of their weighted

outputs. Note that the topology is unconstrained and can represent any

possible relationships (including recurrent) (Stanley, 2006).

Although it has been shown that CPPN are capable of encoding various pattern

commonly seen in nature, we still need algorithm which would enable us to evolve the

CPPN to match the certain patterns, that we want to encode. In the next section, we

will describe algorithm for the NeuroEvolution of Augmenting Topologies ( NEAT ). This

algorithm can be modified to evolve not strictly ANNs , but also CPPNs , whose neurons

typically contain much more various activation functions than ANN.

2.4 NeuroEvolution of Augmenting Topologies

NEAT is an algorithm for evolving ANN using the direct encoding technique. In the na-

ture the encoding of the sophisticated structures such as human brain is done through in-

direct encoding in the DNA. Indirect encoding has many advantages over direct encoding.

It is capable of encoding large structures using the order of magnitude lower amount of

information. NEAT provides background for HyperNEAT algorithm, which is separated



CHAPTER 2. THEORETICAL FOUNDATION 15

algorithm build on top of the NEAT algorithm. HyperNEAT in contrast uses indirect

encoding technique similar to what we see in nature. To understand HyperNEAT algo-

rithm we must first understand, how NEAT works. In addition, it has been shown, that

in certain tasks NEAT outperforms other algorithms for evolving ANN structures which

use indirect encoding. For example, in the pole balancing task it outperformes Cellular

Encoding (Gruau, 1993) technique 25 times (Stanley, 2002). NEAT evolves topology and

weights of the ANN incrementally. This presents several technical challenges:

1. Finding a meaningful way for two disparate topologies to cross over.

2. Protecting the topological innovation, which needs few generations to get optimized.

Preventing it from disappearing from the population prematurely.

3. Finding the structure with minimal size throughout the evolution. Ideally without

the need of special fitness function which would measure complexity.

NEAT addresses all of these problems efficiently. In the following parts it will be

shown how algorithm handles these challenges.

2.4.1 Competing Conventions

One of the main problems for NeuroEvolution is the Competing Conventions Problem,

also known as the Permutations Problem (Radcliffe, 1993). Competing conventions means

having more than one way to express a solution to a weight optimization problem with

a neural network. When genomes representing the same solution do not have the same

encoding, crossover is likely to produce damaged offspring.



CHAPTER 2. THEORETICAL FOUNDATION 16

Figure 2.6: The two networks compute the same exact function even though their

hidden units appear in a different order and are represented by different

chromosomes, making them incompatible for crossover. The figure shows

that the two single-point recombinations are both missing one of the 3

main components of each solution. The depicted networks are only 2 of

the 6 possible permutations of hidden unit orderings (Stanley, 2002).

Figure 2.6 depicts the problem for a simple 3-hidden-unit network. The three hid-

den neurons A, B, and C, can represent the same general solution in 3! = 6 different

permutations. When one of these permutations crosses over with another, critical infor-

mation is likely to be lost. For example, crossing [A,B,C] and [C,B,A] can result in

[C,B,C], a representation that has lost one third of the information that both of the

parents had. In general, for n hidden units, there are n! functionally equivalent solu-

tions (Stanley, 2002). In the problem of Topology and Weight Evolving Artificial Neural

Networks( TWEANNs ) the problem of competing conventions is even greater, because

two networks with completely different topologies can represent equivalent functionality

(Stanley, 2002).

NEAT algorithm tries to solve this problem by finding the way to match up the

genotype representing different structures. The genomes can vary in length and the same

structures can appear at different positions in the ANN. Nature faces same problem



CHAPTER 2. THEORETICAL FOUNDATION 17

when matching up genes for crossover. Nature’s solution utilizes homology: two genes

are homologous if they are alleles of the same trait (Stanley, 2002). In the NEAT, the

main idea is, that historical origin of two genes is direct evidence of their homology if

these genes share the same origin. NEAT performs artificial synapsis based on historical

markings. This allows the algorithm to add new structure and still track the origin of

the gene. Two genes are therefore compared based on the historical markings, which

measures their (dis)similarity (Stanley, 2002).

2.4.2 Protecting Innovation with Speciation

By introducing mutation to the ANN new structures are developed in the network. It is

quite probable, that these structures will not have optimized parameters as soon as they

appear, they can reduce the fitness of the individual. It is unlikely that a new node or

connection just happens to express a useful function as soon as it is introduced. Thus,

it is necessary to somehow protect networks with structural innovations so they have a

chance to make use of their new structure. In nature, different structures tend to be in

different species that compete in different niches. Thus, innovation is implicitly protected

within a niche. Similarly, if networks with innovative structures could be isolated into

their own species, they would have a chance to optimize their structures before having

to compete with the population at large (Stanley, 2002).

Speciating, also known as niching, has been studied in Genetic Algorithms, where a

function has multiple optima, but is not usually applied to neuroevolution. The compet-

ing conventions problem makes measuring compatibility particularly problematic because

networks that compute the same function can appear very different. NEAT solution to the

competing conventions problem allows the population to be easily speciated. NEAT uses

explicit fitness sharing (Goldberg and Richardson, 1987), which forces individuals with

similar genomes to share their fitness payoff. Fitness sharing divides the population into

different fitness peaks, which consist of ANNs sharing the fitness. Each peak is limited by

size, so there is no threat of any one species taking over the whole population. Explicit

fitness sharing is well-suited for NEAT, because similarity can easily be measured based

on the historical information in the genes (Stanley, 2002).



CHAPTER 2. THEORETICAL FOUNDATION 18

2.4.3 Initial Population and Topological Innovation

In general, it is desirable to evolve minimal solutions; that way, the number of parameters

that have to be searched is reduced. If we start with the set of networks with random

topologies, this does not lead to finding the minimal solutions, because the networks

can incorporate many unnecessary parts from the beginning. The way to overcome this

problem would be to penalize large networks by evaluating them with worse fitness.

NEAT uses alternative solution. It starts out with a minimal population of networks,

and in the next iterations extends these simple structures. The structures therefore grow

only if it benefits the solution, resulting in the desired minimal solution to be found.

2.4.4 Genetic Encoding and Historical Markings

NEAT’s genetic encoding scheme is designed to allow corresponding genes to be easily

lined up when two genomes cross-over during mating. Genomes are linear representations

of network connectivity. Each genome includes a list of connection genes, each of which

refers to two node genes being connected. Node genes provide a list of inputs, hidden

nodes, and outputs that can be connected. Each connection gene specifies the in-node, the

out-node, the weight of the connection, whether or not the connection gene is expressed

(an enable bit), and an innovation number, which allows finding corresponding genes

(Stanley, 2002).

2.4.5 Mutation and Crossover in NEAT

Mutation in NEAT can change both connection weights and network structures. Con-

nection weights mutate as in any NeuroEvolution system, with each connection either

perturbed or not at each generation. Structural mutations occur in two ways. Each mu-

tation expands the size of the genome by adding gene(s). In the add connection mutation,

a single new connection gene with a random weight is added connecting two previously

unconnected nodes. In the add node mutation, an existing connection is split and the

new node placed where the old connection used to be. The old connection is disabled

and two new connections are added to the genome. The new connection leading into

the new node receives a weight of 1, and the new connection leading out receives the

same weight as the old connection. This method of adding nodes minimizes the initial

effect of the mutation (Stanley, 2002). Through mutation, the genomes in NEAT will



CHAPTER 2. THEORETICAL FOUNDATION 19

Figure 2.7: A genotype to phenotype mapping example. A genotype is depicted that

produces the shown phenotype. There are 3 input nodes, one hidden,

and one output node, and seven connection definitions, one of which is

recurrent. The second gene is disabled, so the connection that it specifies

(between nodes 2 and 4) is not expressed in the phenotype (Stanley, 2002).

gradually get larger. As we mentioned earlier, NEAT tracks the historical information

about the genes using the historical markings. Tracking these historical origins requires

very little computation. Whenever a new gene appears (through structural mutation), a

global innovation number is incremented and assigned to that gene. When performing

the crossover, the offspring inherits the same innovation numbers on each gene as the par-

ents. The historical markings give NEAT a powerful new capability (Stanley, 2002). The

system now knows exactly which genes match up with which. When crossing over, the

genes in both genomes with the same innovation numbers are lined up. These genes are

called matching genes. Genes that do not match are either disjoint or excess, depending

on whether they occur within or outside the range of the other parent’s innovation num-

bers (Stanley, 2002). They represent structure that is not present in the other genome.

In composing the offspring, genes are randomly chosen from either parent at matching

genes, whereas all excess or disjoint genes are always included from the more fit parent.

This way, historical markings allow NEAT to perform crossover using linear genomes

without the need for expensive topological analysis (Stanley, 2002).



CHAPTER 2. THEORETICAL FOUNDATION 20

Figure 2.8: The two types of structural mutation in NEAT. Both types, adding a con-

nection and adding a node, are illustrated with the connection genes of a

network shown above their phenotypes. The top number in each genome

is the innovation number of that gene. The innovation numbers are his-

torical markers that identify the original historical ancestor of each gene.

New genes are assigned new increasingly higher numbers. In adding a con-

nection, a single new connection gene is added to the end of the genome

and given the next available innovation number. In adding a new node,

the connection gene being split is disabled, and two new connection genes

are added to the end the genome. The new node is between the two new

connections. A new node gene (not depicted) representing this new node

is added to the genome as well (Stanley, 2002).



CHAPTER 2. THEORETICAL FOUNDATION 21

Figure 2.9: Matching up genomes for different network topologies using innovation

numbers. Although Parent 1 and Parent 2 look different, their innovation

numbers(shown at the top of each gene) tell us which genes match up

with which. Even without any topological analysis, a new structure that

combines the overlapping parts of the two parents as well as their different

parts can be created. Matching genes are inherited randomly, whereas

disjoint genes (those that do not match in the middle) and excess genes

(those that do not match in the end) are inherited from the more fit parent.

In this case, equal fitnesses are assumed, so the disjoint and excess genes

are also inherited randomly. The disabled genes may become enabled again

in future generations: there’s a preset chance that an inherited gene is

disabled if it is disabled in either parent (Stanley, 2002).



CHAPTER 2. THEORETICAL FOUNDATION 22

2.4.6 Speciating and Shared Fitness in NEAT

As we mentioned earlier NEAT also incorporates speciation of the population. The

individuals compete in their own niches. This way, topological innovations are protected

in a new niche where they have time to optimize their structure through competition

within the niche. The idea is to divide the population into species such that similar

topologies are in the same species. The division of the population into the niches is

solved via historical markings. The compatibility distance δ of different structures in

NEAT is defined as linear combination of the number of excess E, disjoint D genes, and

weight differences of matching genes W.

δ =
c1E

N
+
c2D

N
+ c3W̄ (2.4)

The coefficients c1 , c2 , and c3 allow us to adjust the importance of the three factors,

and the factor N , the number of genes in the larger genome, normalizes for genome size

(N can be set to 1 if both genomes are small, i.e., consist of fewer than 20 genes) (Stanley,

2002). The genomes with small compatibility distance belong into the same niche while

the ones with big distance have different niches. As the reproduction mechanism for

NEAT, explicit fitness sharing is used (Goldberg and Richardson, 1987), where organisms

in the same species must share the fitness of their niche. The adjusted fitness f
′
i for

organism i is calculated according to its distance δ from every other organism j in the

population:

f
′

i =
fi∑n

i=1 sh (δ (i, j))
(2.5)

The sharing function sh is set to 0 when distance δ (i, j) is above the threshold δt;

otherwise, sh (δ (i, j)) is set to 1 (Spears, 1995). Thus,
∑n

i=1 sh (δ (i, j)) reduces to the

number of organisms in the same species as organism i. Every species is assigned a po-

tentially different number of offspring in proportion to the sum of adjusted fitnesses f
′
i

of its member organisms. Species then reproduce by first eliminating the lowest per-

forming members from the population. The entire population is then replaced by the

offspring of the remaining organisms in each species. NEAT further provides search to-

wards minimal-dimensional spaces by starting out with a uniform population of networks

with zero hidden nodes (i.e., all inputs connect directly to outputs) (Stanley, 2002).



CHAPTER 2. THEORETICAL FOUNDATION 23

2.5 Hybercube-based NeuroEvolution of

Augmenting Topologies

It has been shown in the previous sections, how CPPN is able to encode relatively sophis-

ticated spatial pattern by order of magnitude smaller amount of information. To utilize

this approach, when evolving large-scale ANN, the CPPN must be capable of encoding

connectivity pattern. Fortunately it has been shown that this is indeed possible.

2.5.1 Mapping Spatial Patterns to Connectivity Patterns

It turns out that there is an effective mapping between spatial and connectivity patterns

that can elegantly exploit geometry. The main idea is to input into the CPPN the

coordinates of the two points that define a connection rather than inputting only the

position of a single point. The output is then interpreted as the weight of the concrete

neural connections rather than intensity of a point. The CPPN for example takes on

input pair of points in the four-dimensional space (x1, y1, x2, y2) and returns value of the

weight w. This way it can be queried for the connections between any two points in this

space. By the convention, if the weight w is bellow certain value wmin it is thought of

as if it would be zero. The magnitude of weight above this threshold are scaled between

zero and certain maximum magnitude wmax. Therefore, the pattern produced by the

CPPN can represent any network topology (Stanley, 2009).

The connectivity pattern produced by a CPPN in this way is called the substrate.

Spatial patterns with symmetries and regularities correspond to connectivity patterns

with the same properties (Stanley, 2009). In the next part we will discuss the possibilities

of different substrates for HyperNEAT, and how we need to modify the CPPN to be able

to query for the connections between the points in the concrete Cartesian space and

produce substrate.



CHAPTER 2. THEORETICAL FOUNDATION 24

Figure 2.11: Various Connectivity Patterns Produced by Connective CPPNs. These

patterns, produced through interactive evolution, exhibit several impor-

tant connectivity motifs: (a) bilateral symmetry, (b) imperfect symmetry,

(c) repetition, and (d) repetition with variation (Stanley, 2009).

Figure 2.10: Hypercube-based Geometric Connectivity Pattern Interpretation. A grid

of nodes, called the substrate, is assigned coordinates such that the cen-

ter node is at the origin. (1) Every potential connection in the sub-

strate is queried to determine its presence and weight; the dark directed

lines shown in the substrate represent a sample of connections that are

queried. (2) For each query, the CPPN takes as input the positions of

the two endpoints and (3) outputs the weight of the connection between

them. After all connections are determined, a pattern of connections

and connection-weights results that is a function of the geometry of the

substrate. In this way, connective CPPN produces regular patterns of

connections in space (Stanley, 2009).



CHAPTER 2. THEORETICAL FOUNDATION 25

2.5.2 Types of Substrate Configuration

So far we have mentioned the substrate produced by CPPN with four inputs. This four-

dimensional hypercube is often called as state-space sandwich (Churchland, 1986) and we

will use this terminology as well. The sandwich is a restricted three-dimensional structure

in which one layer can send connections only in one direction to one other layer. This

substrate allows us to represent ANN with two layers: input and output layer. In general

we have more substrate possibilities and all of them are useful, but each for different task.

Figure 2.12: Various Substrate Configurations. This figure shows (b) a three-

dimensional configuration of nodes centered at (0, 0, 0), (c) a “state-

space sandwich” configuration in which a source sheet of neurons con-

nects directly to a target sheet, and (d) a circular configuration. Differ-

ent configurations are likely suited to problems with different geometric

properties.. (Stanley, 2009).

Although other types of substrates are useful as well, we will mainly focus on sandwich

and 6-dimensional hypercube substrates. We will show, that with this subset of possible

substrates, we are capable of encoding arbitrary ANN including recurrent connections.

2.5.2.1 State-Space Sandwich Substrate

Sandwich is one of the typical substrate configurations used in HyperNEAT. It is a single

two-dimensional sheet of neurons that connects to another two-dimensional sheet. It can

be expressed by the single CPPN with 4-dimensional input (x1, y1, x2, y2), where (x2, y2) is

interpreted as a location on the target sheet rather than as being on the same plane as the

source coordinate (x1, y1). In general, we can design CPPN with multiple outputs instead

of the single output. The additional outputs provide the possibility of encoding recurrent



CHAPTER 2. THEORETICAL FOUNDATION 26

Figure 2.13: Organization of the HyperNEAT substrate. There were two distinct sub-

strates used (a) and the CPPN has three outputs. CPPN(0) output is a

weight between input substrate (sensor) and a neuron in the upper sub-

strate. Second, CPPN(1) output is used as bias for neurons in the upper

substrate. For bias calculation 3rd and 4th CPPN inputs are set to 0.

Last CPPN(2) output represents connection weights among neurons in

the upper substrate (Drchal et al., 2009).

connections and bias the neurons. I provide a figure, which depicts the CPPN and the

substrate for HyperNEAT which evolves the ANN for the controlling of the robots in

the simulated environment. This experiment has been adopted from another scientific

article which also explores possibilities of HyperNEAT. In this experiment, the additional

outputs of the CPPN enable encoding of the connections among the neurons in the upper

layer of the sandwich substrate and bias the neurons.

The advantage of encoding the inputs and outputs in both x-coordinate and y-

coordinate is, that we can adjust the resolution of the substrate, so that it suits better for

modules with various number of inputs/outputs. This approach is more flexible. How-

ever this also means, that there are more options of spreading the inputs and outputs of

the modules in the space. For the concrete task, we might have to enumerate different

options of spreading the inputs and outputs and choose the best option experimentally,

which can be difficult task.

2.5.2.2 6-Dimensional Hypercube Substrate

6-Dimensional hypercube(x1, y1, z1, x2, y2, z2) allows us to query the CPPN for the weight

of the connection between two arbitrary neurons in the 3-dimensional space. This for-

malism is interesting because the topologies of biological brains, including the human



CHAPTER 2. THEORETICAL FOUNDATION 27

brain, theoretically exist within its search space (Stanley, 2009). It allows us to develop

ANN with multiple hidden layers.

Figure 2.14: CPPN for the Six-Dimensional Hypercube substrate. Six inputs repre-

senting the position of two neurons in the three-dimensional space. Sin-

gle output - the weight of the connection

2.5.3 Algorithm Description

We have described all the parts of the framework needed for the HyperNEAT to evolve

large-scale Artificial Neural Networks. We have described CPPNs which allow us to

encode potentially huge patterns inside relatively small structure. We have shown how

these CPPN can encode not only spatial, but also connectivity patterns. Therefore they

can encode also ANNs. We have also described in detail the NEAT algorithm which is

able to evolve CPPNs. HyperNEAT utilizes NEAT for evolving CPPNs and then uses

them to query for connections in concrete ANN , which structure we aim to evolve. It

evaluates the CPPN depending on the performance of the ANN which connections were

determined by querying the CPPN. This way HyperNEAT can evolve large-scale ANNs

while using limited amount of computational resources.



Chapter 3

Algorithms Proposed and Tested

In this chapter, the extension of the HyperNEAT for the HANNS will be explained in

detail. The different ways of utilizing the HyperNEAT for HANNS will be discussed and

each approach will be evaluated and compared with the other approaches. The solution

for different substrates will be included.

3.1 Hybercube-based NeuroEvolution of

Augmenting Topologies for Hybrid Artificial

Neural Network Systems

The HANNS unlike standard ANN is built up from the Neural Modules. These modules

have concrete internal structure, which is encapsulated inside of the Neural Module. In

the concrete HANNS, they are approached as if they were black boxes, which provide

mapping between n inputs and m outputs. Example of the single Neural Module is

depicted on the figure 3.1. As can be seen on the figure, the internal structure of the

Neural Module can be sophisticated, in fact it can even incorporate autonomous ANN

with lots of neural connections solving concrete task. In the feed-forward HANNS, there

are multiple Neural Modules in each layer. They accept inputs from the previous layer

of the HANNS, and provide outputs to the following layer. The whole system accepts

external inputs and provides external outputs for the concrete task. The structure looks

intuitively similar to the ANN, but Neural Modules can typically operate on completely

different principles. In addition they receive arbitrary number of inputs and provide

28



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 29

Figure 3.1: An example of Hybrid Artificial Neural Network System, which uses feed-

forward topology. particular Neural Modules are placed in layers and are

fully connected between layers. Each Module as given number of inputs,

outputs (potentially configuration inputs too) and one prosperity output

(see further in the text).

arbitrary number of outputs to the next layer of the HANNS.

HANNS can be evolved using the evolutionary algorithm with direct encoding (Vitku

and Nahodil, 2014). This algorithm will be later compared with the extension of the

HyperNEAT algorithm. we will name the EA used in the publication as ”Basic EA”, to

distinguish it verbally from other evolutionary algorithms.

However in case of the large scale HANNS it would not be feasible to use the direct

encoding technique. In addition, if the pattern encoded by the network exhibits geomet-

rical properties, which the HANNS provides (symmetry, imperfect symmetry, etc.), it

could be suitable to use this method instead of an evolutionary algorithm with the direct

encoding. In general, the HANNS can contain various types of the Neural Modules in

each layer which can complicate the task of finding the right topology significantly.

In the next sections, we will use the term interlayer for the connections between the

outputs of the Neural Modules from one layer to the inputs of the Neural Modules of the

next layer of the HANNS.



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 30

3.2 Sandwich Substrate

Firstly, let us focus on the HANNS without hidden layer. By this we mean a structure,

which has given number of inputs connected to the input layer of the Neural Modules.

This layer is then connected to the output layer of other Neural Modules by given con-

nections. Because this kind of HANNS does not have hidden layer, it in face uses single

interlayer of connections between Neural Modules. The output layer of HANNS then

provides external outputs of the whole system.

If we were given a HANNS restricted in such way, that each subsystem has exactly one

input and one output, we would be able to use the HyperNEAT with sandwich substrate

and would not have to develop different method. However, we want the algorithm to

evolve HANNS without restricting the type of Neural Modules they incorporate. In this

section we will discuss the ways, how to evolve these HANNS using HyperNEAT.

3.2.1 Encoding Additional Inputs and Outputs of each Neural

Module as a Vector

In this case, each of the modules of the layer has organized inputs/outputs in separate

vector. We have to use CPPN with 4 inputs (x1, y1, x2, y2). The x1 coordinate stands

for the index of the Neural Module in the input layer. y1 is given by the index of the

output of the neuron x1. similarly x2 represents the index of the Neural Module in the

output layer and y2 index of the concrete input of this neuron. This way we organize

the multiple inputs/outputs of each subsystem in the y-coordinate as a vector. In the

two-dimensional space, x-dimension is divided equally among the Neural Modules. The

y-dimension is sampled for each neural module individually depending on the number of

inputs or outputs of the neuron and depending on whether it is input or output layer

of the HANNS. If we want to have only feed-forward connections in this HANNS, we

can use single-output CPPN. If we want to incorporate recurrent connections, we can

achieve this by using multiple-output CPPN. With multiple output CPPN we can assign

different outputs for feed-forward connections and recurrent connection. This principal

was mentioned earlier in the robot motion example (Drchal et al., 2009).

The advantage of this approach is, that the mapping of the inputs and outputs of the

Neural Modules is straightforward. We simply generate vector of inputs and outputs for

each subsystem and do not have to consider how to spread these inputs and outputs in the

space. Trade-off for this is, that if the number of inputs or outputs in the concrete layer



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 31

Figure 3.2: HyperNEAT for the HANNS using sandwich substrate. Additional inputs

and outputs are encoded as a vector by y-coordinate of the layer. A) - out-

put layer of the HANNS. B) - input layer of the HANNS. C) - CPPN used

to query for the weight of the connection between subsystems from input

layer and subsystems from output layer. Grey rectangles - individual Neu-

ral Modules of the HANNS. Blue circles - the inputs and outputs of these

subsystems. In this case we have Neural Modules with 4 inputs and 4 out-

puts. Assuming that the size of the substrate space is normalized, that is

x ∈ 〈−1, 1〉 . and y ∈ 〈−1, 1〉, the input into the CPPN for the queried con-

nection would be x1 = −1, y1 = −1, x2 = 1, y2 = −1
3 . This holds true, if

we sample the space in a way, that the substrate space is distributed evenly

among the inputs/outputs of the neural module. For example, in the input

layer we have two subsystems. Their position differs in the x-dimension,

so first one receives x = −1 and second x = 1. Each of them have four

outputs. So if we sample them equidistantly along the y-dimension, we

get values y ∈
{
−1,−1

3 ,
1
3 , 1

}
for the outputs of the subsystems.



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 32

of the HANNS vary significantly, the resolution for the subsystem with lesser number

of inputs/outputs will be too large, while the resolution for the subsystem with bigger

number of inputs/outputs will be too small. However, if we have Neural Modules with

similar number of inputs/outputs, this can be feasible solution.

3.2.2 Encoding Additional Inputs and Outputs of each Neural

Module as a Matrix

Another option of organizing the multiple outputs and inputs of the Neural Modules in

the HANNS is to spread the inputs and outputs of each Neural Module into the two-

dimensional space. Consequently, we do not get single vector for each neural module,

but instead we get two-dimensional matrix, because we use both x-coordinate and y-

coordinate. This means, that the inputs and outputs of the single neural module will not

differ only in the y-coordinate but also in the x-coordinate, depending on how we spread

the inputs and outputs in the two-dimensional space. For the feed-forward network, we

need single output of the CPPN. In case we want to add recurrent connections, we can

increase the number of outputs of the CPPN.

The advantage of encoding the inputs and outputs in both x-coordinate and y-

coordinate is, that we can adjust the resolution of the substrate, so that it suits better for

modules with various number of inputs/outputs. This approach is more flexible. How-

ever this also means, that there are more options of spreading the inputs and outputs of

the modules in the space. For the concrete task, we might have to enumerate different

options of spreading the inputs and outputs and choose the best option experimentally,

which can be difficult task.

3.3 6-Dimensional Hypercube Substrate

For the HANNS, which contain only input and output layer, the HyperNEAT with sand-

wich substrate is sufficient and we do not need to develop another approach using different

substrate. However, in general we want to be able to evolve HANNS with arbitrary num-

ber of layers. To achieve this we must introduce more expressive substrate then sandwich.

When we want to apply HyperNEAT on ANN with hidden layer, we can use 6-dimensional

hypercube substrate. Corresponding CPPN receives 6 inputs ( for each point we feed the



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 33

Figure 3.3: HyperNEAT for the HANNS using sandwich substrate. Additional inputs

and outputs are encoded as a matrix by x-coordinate and y-coordinate

of the layer. A) - output layer of the HyperNEAT. B) - input layer

of the HANNS. C) - CPPN used to query for the weight of the con-

nection between subsystems from input layer and subsystems from out-

put layer. Grey rectangles - individual Neural Modules of the HANNS.

Blue circles - the inputs and outputs of these subsystems. In this case

we have Neural Modules with 4 inputs and 4 outputs. Assuming that

the size of the substrate space is normalized, that is x ∈ 〈−1, 1〉 and

y ∈ 〈−1, 1〉, the input into the CPPN for the queried connection would be

x1 = −1, y1 = −1, x2 = 1
3 , y2 = 1. The coordinates of the outputs of the

first neural module from the left in the input layer would be following :{
(−1,−1) , (−1, 1) ,

(
−1

3 ,−1
)
,
(
−1

3 , 1
)}



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 34

CPPN with the coordinates in the 3-dimensional space). One output is sufficient both for

the feed-forward and recurrent networks, because of the z-coordinate. This coordinate

is different for the neurons belonging to the different layers of the network. To apply

this substrate to evolution of HANNS we must handle the obstacle of the multiple inputs

and outputs of the Neural Modules. This can be done in the similar way as mentioned

in the previous subsection where we dealt with the sandwich substrate for HANNS. The

difference is, that for all hidden layers, we have to spread both inputs and outputs of the

Neural Modules, instead of spreading only inputs or outputs. That means, that each sub-

system will receive certain part of the 2-dimensional space, and spread its inputs evenly

in this space. Then it will spread the outputs in the same space. Both inputs and outputs

will be therefore encoded in the 2-dimensional matrix, or as a vector depending on the

chosen spreading. CPPN will receive 6 inputs. Input (x1, y1, z1) will correspond to the

concrete output of the subsystem from the layer z1. Input (x2, y2, z2) will correspond to

the concrete input of the subsystem from the layer z2. For the 6-dimensional hypercube,

the z-dimension will be sampled evenly for each interlayer of the HANNS.

We have successfully designed a way, to encode any given HANNS in a 6-dimensional

hypercube. If we have only 2-layer network(with single interlayer), we can use sandwich

substrate method, which is simpler. However if we need to evolve more sophisticated

HANNS we can still do that using the 6-dimensional hypercube substrate.



CHAPTER 3. ALGORITHMS PROPOSED AND TESTED 35

Figure 3.4: HyperNEAT for the HANNS using 6-dimensional hypercube substrate. A)

- output layer of the HANNS . B) - outputs of the hidden layer of the

HANNS. C) - inputs of the hidden layer of the HANNS. D) - input layer

of the HANNS. E) - CPPN used to query for the weights of the connections

between inputs and outputs of the Neural Modules. Blue circles - outputs

of the Neural Modules. Green circles - inputs of the Neural Modules. Each

cube represents single neural module from the hidden layer. As we can

see the subsystems in the hidden layer have 4 inputs and single output.

Subsystems in the output layer have 4 inputs each and subsystems in the

input layer have 4 outputs each. Assuming that the size of the substrate

space is normalized, that is x ∈ 〈−1, 1〉, y ∈ 〈−1, 1〉 and z ∈ 〈−1, 1〉, the

input into the CPPN for the queried connection would be x1 = −1
3 , y1 =

−1, z1 = −1, x2 = 1, y2 = −1, z2 = 0. Note : although from the picture,

it seems that the z-coordinate of B), and C) differs, it is not true. They

are equal. The z-coordinate is always equal for the inputs and outputs of

Neural Modules from the same layer.



Chapter 4

Algorithm Implementation and

Testing

In this chapter I justify the choice of the concrete HyperNEAT algorithm implementa-

tion. This implementation is further extended, to operate on HANNs as well as ANNs.

In the later sections I describe experiments which have been conducted to observe the

performance of the implemented algorithm.

4.1 HyperNEAT for HANNS Algorithm

Implementation

From the various implementation of standard HyperNEAT algorithm, which can be found

on the HyperNEAT users webpage 1 , I have chosen Java library called ”Another Hyper-

NEAT Implementation (AHNI)” (Coleman, 2010) as the basis for implemention of the

HyperNEAT for HANNS. AHNI provides efficient implementation of the algorithm with

the possibility of the parallel processing of the evaluation function for the concrete ANN.

Because of its object oriented architecture, it can be extended for conducting experiments

on custom Artificial Neural Networks. With some additional coding it can serve as the

basis for the experiments on hybrid artificial neural networks as well. The parameters

of the evolution and evolutionary operators can be modified and different results can be

observed. The whole evolution is finished, once the network with desired performance

1HyperNEAT Users Webpage: http://eplex.cs.ucf.edu/hyperNEATpage/

36



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 37

has been developed or after given number of generations.

4.1.1 Proposed Library Extension

AHNI performs several evolution runs until it achieves desired precision of the solution

on the given training set, or until the given number of iterations expires. Each iteration

starts with the given population. In this case the genotype stands for the set of the

compositional pattern producing networks. These are then transcribed to the phenotype

corresponding to the set of substrates with assigned weights. These substrates are then

evaluated using the fitness function either sequentially or simultaneously using the parallel

fitness evaluation function. After that the evolutionary operators are performed on the

evaluated individuals and they are pushed to the next iteration of the algorithm. The

main loop of the implementation is depicted on the figure bellow.

Figure 4.1: Evolutionary cycle of the HyperNEAT algorithm

In order to evaluate the hybrid artificial neural networks using the given framework,

custom substrate is generated which contains information about the weights of the con-

nections between the modules of the network. For the HANNS with sandwich substrate,



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 38

the use of the CPPN with 4 inputs (x1, y1, x2, y2) is sufficient. For the arbitrary feed-

forward or recurrent HANNS, CPPN with 6 inputs(x1, y1, z1, x2, y2, z2), where z stands

for the index of the layer can be used. The framework provides the possibility of evolving

both of these CPPNs, so we just have to design and implement the transcriber from the

genotype to our custom substrate. For every experiment, custom evaluation function

has to be coded, which will evaluate the performance of each of the substrates on the

given problem. The properties ”.prop” file used in this program allows us to modify the

parameters of the evolution, CPPNs and substrates. This allows us to conduct various

experiments in order to properly determine the performance of the extended HyperNEAT

algorithm.

4.2 Experiments Background

All discussed experiments have been conducted using the extension of the AHNI java

implementation (Coleman, 2010). Corresponding hybrid modular systems have been im-

plemented in the NengoROS framework, they have been adopted from other experiments

conducted by Jaroslav Vitku (Vitku, 2015). The nodes of the system are implemented

as autonomous processes in the robotic operation system (Quigley et al., 2009). They

exchange data by sending and receiving ROS messages. Simlator NengoROS decodes

these ROS messages into the vectors of float values, which are then used for intercon-

necting the Neural Modules. When evaluating the concrete genome in the genotype, the

information about the topology of the network is pushed to the simulator, which modifies

the topology of the system correspondingly. Afterwards it launches simulation for the

selected number of steps. When the simulation is finished, the performance is measured

either by separate node of the system(evaluator) or by combining the Prosperity outputs

of the nodes. The Prosperity output is a subjective heuristics which tries to define how

well is particular Neural Module used in the current system. In the following part, the

concrete experiments will be described, and evolutionary results will be depicted.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 39

4.3 Experiment 1 - Implementing XOR Logic

Function Using HANNS

The first set of experiments tested the optimization of the weights of the connections in

the HANNS, which is capable of simulating the Exclusive-OR logic function. This kind of

experiment has been very popular especially when designing classificators in AI, because

the input dataset is lineary inseparable so it can not be solved by ANN without hidden

layer, without mapping the input data into the higher dimension.

The HANNS consist of five types of the MIMO subsystems. Three of them logical-

AND, OR and NAND logic gates, one input data generator and one evaluator - mean

square error calculator. The input data generator sends the inputs into the input layer

of logic gates and the expected output to the evaluator. The output layer of the logic

gates sends the outputs to the evaluator and the results are compared. The processing

of a single input until the evaluator corresponds to the single time step of the simulator.

The simulator runs in several time steps and the fitness value of the concrete setup is

calculated by the formula:

fitness =

∑N
i=1 output = input label

N
(4.1)

,where N=number of time steps of the simulator.

Figure 4.2: The structure of the HANNS simulating Exclusive-OR function. When-

ever the sum of the weights leading to the single input of the concrete logic

gate is greater or equal to 0.5 , the corresponding input is evaluated as if

it was equal to 1, otherwise the 0 input is taken.

I have conducted experiments for evolving the Exclusive-OR HANNS using simple vec-

tor input/output dispersion setting mentioned in the previous chapter, because its perfor-

mance proved to be more efficient than the matrix substrate setting. The 6-dimensional



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 40

feed-forward hypercube substrate has been used, because the HANNS consists of 2 in-

terlayers, so the sandwich substrate would be insufficient in this case. The results of the

algorithm were evaluated and compared with the performance of the evolutionary algo-

rithm named Basic EA implemented by my thesis supervisor (Vitku and Nahodil, 2014).

Figure 4.3: The figure depicts the spreading of the inputs and outputs of the modules

in the substrate. The inputs and outputs are simply ordered in a row

forming a vector. This is the simplest setting but it proved to be more

efficient than spreading the inputs and outputs of subsystems in concrete

layer of the HANNS in a matrix.

Three experiments from simplest to the more complicated HANNS consisting of more

Neural Modules have been conducted. In the following subsections, the results from each

of the experiments will be depicted and evaluated.

4.3.1 Experiment 1 - A) Simple HANNS XOR Problem

In the simplest version of the experiment, the structure of the HANNS corresponds to

the one depicted in the Fig 4.2. There are single NAND and OR Neural Modules in

the second layer of the HANNS and single NAND Neural Module in the third layer of

the HANNS. The task for the EA is to find connection weights in order to approximate

the XOR function (note that the communication between Neural Modules is continuous,

discretization happens only inside the Modules). The results from the simple version of

the experiment are presented bellow:



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 41

Weights Setting Legend

IN(1) → OR(1) IN(1) → OR(2)

IN(2) → OR(1) IN(2) → OR(2)

IN(1) → NAND(1) IN(1) → NAND(2)

IN(2) → NAND(1) IN(2) → NAND(2)

OR(1) → AND(1) OR(1) → AND(2)

NAND(1) → AND(1) NAND(1) → AND(2)

Weights Setting Legend

IN(1) → OR(1) IN(1) → OR(2)

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

Weights Setting Legend

1.0 0.0

0.27 0.03

0.34 0.09

0.24 0.75

0.68 0.08

0.92 1.0

Weights Setting Legend

1.0 1.0

0.8 0.15

1.0 1.0

1.0 0.41

0.43 0.19

0.79 0.38

Table 4.1: Best genomes found by the algorithms in the Exclusive-OR Experiment.

The mapping of genomes to topology of the HANNS is shown in the Weight

Setting Legend.

In this relatively simple task, the Basic Evolutionary Algorithm converged faster to

the globally optimal weights setting. The reason for this can be, that the HyperNEAT al-

gorithm performs better on tasks exhibiting some geometrical properties, which this task

does not and every module has different functionality. The HyperNEAT algorithm might

perform better on tasks, where the connections to the nodes are symmetrical, or repeat

with small variations.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 42

generation

0 5 10 15 20

fi
tn

e
s
s
 v

a
lu

e

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Maximal fitness in population

Figure 4.4: Comparison of the maximal fitnesses found by the Basic EA and Hyper-

NEAT. Both algorithms had population size set to 50 individuals. Green

- HyperNEAT, Blue - Basic EA

generation

0 5 10 15 20

fi
tn

e
s
s
 v

a
lu

e

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Mean fitness in population

Figure 4.5: Comparison of the mean fitnesses found by the Basic EA and Hyper-

NEAT. Both algorithms had population size set to 50 individuals. Green

- HyperNEAT, Blue - Basic EA



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 43

generation

0 5 10 15 20

s
p
e
c
ie

s
 c

o
u
n
t

15

20

25

30

35

40

45

50
Number of distinct species in population

Figure 4.6: Figure depicts the number of distinct species in the CPPN population

throughout the evolution. Speciation target has been set to 5.

Another reason for HyperNEAT to converge slower to the global optima could be,

that the HyperNEAT algorithm started with the population of distinct individuals which

evolved in the separate niches. It took few generations for algorithm to pick out fewer,

more promising species and focus on their evolution. The graph depicts, how the number

of distinct species has been reduced drastically throughout the evolution. The examples

of the best found individuals from each algorithm are depicted bellow. From the found

champion genomes it is obvious, that this particular problem can be solved by different

topologies of the HANNS.

4.3.2 Experiment 1 - B) Medium HANNS XOR Problem

The evolved HANNS in this case had 6 Logic Neural Modules in the 2nd layer(2× OR,

2×NAND, 2×NAND) and 6 Logic Neural Modules in the 3rd layer(2×OR, 2×NAND,

2 × NAND). Due to the extended number of Neural Modules, the HANNS consists of

3 interlayers. Other components of the HANNS (data generator and evaluator Neural

Modules) remained the same as in the simple HANNS XOR experiment.

In the terms of the maximal fitness, the Basic EA performed better than the Hyper-

NEAT algorithm. The results have been measured for 200 generations, but I depicted

less generations on the figures. For HyperNEAT , after 50 generations, the algorithm got



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 44

generation
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

fi
tn

e
s
s
 v

a
lu

e

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Maximal fitness in population

Figure 4.7: The maximal fitness found by the HyperNEAT algorithm. 50 generations

of the evolution are depicted. The results have been measured in 10 sepa-

rate runs of the experiment.

generation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

fi
tn

e
s
s
 v

a
lu

e

0.5

0.6

0.7

0.8

0.9

1

1.1

Maximal fitness in population

Figure 4.8: The maximal fitness found by the Basic EA. 30 generations of the evolu-

tion are depicted. The results have been measured in 10 separate runs of

the experiment.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 45

generation
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

fi
tn

e
s
s
 v

a
lu

e

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Mean fitness in population

Figure 4.9: The mean fitness found by the HyperNEAT algorithm. 50 generations of

the evolution are depicted. The results have been measured in 10 separate

runs of the experiment.

generation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

fi
tn

e
s
s
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mean fitness in population

Figure 4.10: The mean fitness found by the Basic EA. 30 generations of the evolution

are depicted. The results have been measured in 10 separate runs of the

experiment.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 46

either stuck in suboptimal solution or slowly converged to the globally optimal solution.

Because the results of the generations of 51 to 200 were very similar I decided to omit

them in the graph and depict the interesting part of the evolution. For the Basic EA,

there were 200 generations in the experiment, but after the 30 generations, the algorithm

converged to the optimal solution.

The mean fitness of the population in case of the HyperNEAT was lower approxi-

mately by the value ∈ (0.1, 0.2) compared to the Basic EA. This is due to the fact, that

HyperNEAT allowed less promising individuals from distinct species to evolve themselves.

These individuals are kept in the population even though their fitness is lower. In the

next subsection, the last and the most difficult XOR experiment in terms of the Neural

Modules count will be described.

4.3.3 Experiment 1 - C) Large HANNS XOR Problem

The evolved HANNS in this case had 9 Logic Neural Modules in the 2nd layer (3×OR,

3×NAND, 3×NAND) and 6 Logic Neural Modules in the 3rd layer (2×OR, 2×NAND,

2 × NAND). The system consists of 3 interlayers and again single data generator and

single evaluator.

In the case of bigger HANNS to be evolved, the Basic EA also outperformed the

HyperNEAT algorithm. The results have been extracted for 200 generations, but after

the depicted number of generations, the algorithms converged to the optimal solution

or got stuck in some suboptimal solution. The HyperNEAT algorithm did not always

converge to the global optimum.

The mean fitness of the HyperNEAT was lower by the value ∈ (0.1, 0.2) compared

to the Basic EA. This is not surprising due to the speciating of the population in the

HyperNEAT algorithm.

The reason for Basic EA to perform better than HyperNEAT in this case was, that

HyperNEAT is more suitable for tasks with larger networks, which exhibit geometrical

properties. This was not the case, for the XOR problem, the network did not exhibit

geometrical properties and therefore the HyperNEAT could not benefit from the CPPN

repeating patterns in the space.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 47

generation
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

fi
tn

e
s
s
 v

a
lu

e

0.75

0.8

0.85

0.9

0.95

1

Maximal fitness in population

Figure 4.11: The maximal fitness found by the HyperNEAT algorithm. 130 genera-

tions of the evolution are depicted. The results have been measured in

10 separate runs of the experiment.

generation
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

fi
tn

e
s
s
 v

a
lu

e

0.5

0.6

0.7

0.8

0.9

1

1.1

Maximal fitness in population

Figure 4.12: The maximal fitness found by the Basic EA. 79 generations of the evo-

lution are depicted. The results have been measured in 10 separate runs

of the experiment.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 48

generation
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

fi
tn

e
s
s
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean fitness in population

Figure 4.13: The mean fitness found by the HyperNEAT algorithm. 130 generations

of the evolution are depicted. The results have been measured in 10

separate runs of the experiment.

generation
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

fi
tn

e
s
s
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mean fitness in population

Figure 4.14: The mean fitness found by the Basic EA. 79 generations of the evolution

are depicted. The results have been measured in 10 separate runs of the

experiment.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 49

HyperNEAT parameters

Population size 50 Elitism 0.05

Survival rate(parents %) 0.3 Crossover/Mutation Ration 0.5

Table 4.2: The chosen parameters for the HyperNEAT algorithm in the Exclusive-OR

Experiment. The detailed information about all parameters can be found

in the corresponding experiments properties files. Elitism stands for the

percentage of the champions surviving to the next generation.

In the following part, the 2nd experiment will be explained and the results will be

evaluated and compared to the Basic EA.

4.4 Experiment 2 - Motivation-driven

Reinforcement Learning HANNS Description

Motivation-driven Reinforcement Learning HANNS is system designed on Faculty of Cy-

bernetics of CTU in Prague (Vitku and Nahodil, 2014). It uses two neural modules,

which are interconnected. First one - Reinforcement Learning Module, implements

modified version of the Q-Learning algorithm. This discrete algorithm learns desired

strategy only by means of interaction with the environment based on actions produced

rewards/punishments received (Vitku and Nahodil, 2014). It learns the strategy on-line

by iteratively updating its Q-matrix, which maps state-action pairs to concrete utility

value. The RL module is connected to the second module - Motivation Source Mod-

ule. This module serves as a motivation source and represents the physiological state of

the artificial being. Depending on the physiological state, the agent explores the envi-

ronment randomly, or commits to the previously learned action. Both of these modules

have prosperity values, which determine how well they perform in the given simulation

(agent moves in the grid-world with obstacles and sources of reward).

If the agent behaves efficiently enough, the mean motivation produced by the physiol-

ogy module is low. The mean motivation value can be expressed by the Mean State Dis-

tance to optimal conditions (SF), which is defined as follows (Vitku and Nahodil, 2014):

SFt =

∑
i di
i
∀i = 0, 1, ..., t (4.2)



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 50

where di stands for the distance of the state variable Vi from the optimal conditions of

V = 1. SFt is computed online for each simulation step. Since the Prosperity is indirectly

proportional, its value is computed as:

Pt = 1− SFt (4.3)

By optimization of the topology of this HANNS, higher physiology module prosperity

values can be obtained. The fitness value in the experiments is defined by this prosperity

value of the physiology module.

In the following part we will evaluate designed algorithms for optimizing the topology

of the HANNS (by measuring of the prosperities of the physiological module in the

simulator of the artificial environment) and compare them with the simple Evolutionary

(EA) designed by Jaroslav Vitku.

4.4.1 HyperNEAT Parameters Setting Justification

I have successfully tested the ability of the modified HyperNEAT algorithm to learn the

weights of Motivation-driven Reinforcement Learning HANNS on two concrete experi-

ments. The evaluation of single individual was computationally expensive, because the

simulation had to run for several thousand steps to test the performance of the mod-

ules correctly. Therefore I have chosen the evolutionary parameters of the algorithm by

designing simple ’trick’ experiment (although it is not generally correct), which mea-

sured the distance of the evaluated vector of the weights from the intuitive hand-wired

weights setting. After several runs of the experiment, the best setup of the substrate and

HyperNEAT parameters has have determined.

Although the complete HANNS has more than two layers, the optimization of weights

between two layers of the HANNS were tested and other parts of the system have been

hand-wired. Sandwich substrate was therefore chosen for this concrete task. As discussed

in the preceding chapter, there are different ways of spreading the inputs and outputs

of the particular modules into the 2-dimensional space. In the input layer, each module

received sub-matrix of the 2-dimensional space with the same size. In the output layer,

the reward and importance occupied the same sub-matrix, although they belong to the

separate modules. This kind of setup enabled more efficient evolution of the weights of

the modular connections.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 51

Figure 4.15: Example of mapping the genotype (vector of binary/real values) to the

phenotype (working agent architecture). The Physiological Module is

wired to the reward source in the map, this determines the main goal

of the agent (by the module’s Prosperity value). Outputs of Q-Lambda

Module are directly wired to agents actuators. The genotype of the hand-

designed architecture is depicted in the bottom and its connections are

highlighted in the schematics. Variables representing the state of envi-

ronment (X, Y coordinates) are connected to data inputs of Q-Lambda

node. Reinforcement is connected to the Physiological Module, which

produces motivation and reward for learning in the Q-Lambda Module

(Vitku and Nahodil, 2014).



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 52

Figure 4.16: The setup of the substrate in HyperNEAT for evolution of the Reinforce-

ment Learning modular system. The dimensions of the sandwich were

4 × 4 → 4 × 4 , A) - input layer of the sandwich, Green color - the

sub-matrix of Physiology Module is depicted, Blue color - the sub-matrix

of the output of the Grid World is depicted. B) the output layer of the

sandwich substrate. Yellow color - the input space of the Q-Lambda RL

module , Red color - The input space of the Importance module.

In the following part I will evaluate the performance of the designed algorithm on two

experiments with different instances of the gridworld and compare the results with the

Basic EA (Vitku and Nahodil, 2014).

4.4.2 Experiment 2 - A) Smaller Gridworld

In the first reinforcement learning experiment, the smaller gridworld has been chosen. The

gridworld has 25 fields (5 × 5), two sources of reward and three obstacles. The number

of steps of the agent in the environment has been set to 7000 for single evaluation run.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 53

Figure 4.17: Gridworld 5 × 5 for Reinforcement Learning Experiment. Yellow -

sources of reward. Black - obstacles, Start - initial position of the agent

in the virtual environment

As can be seen in the graphs, both algorithms performed comparably in terms of

the fitness of the champion in each generation of the evolution. Compared to the Basic

EA, the HyperNEAT converged slightly faster to the solution with better fitness than the

topology setup by hand. HyperNEAT algorithm had worse mean fitness in the population.

This fact is due to the speciating the population into the niches, which improves the

chance of different topologies to optimize their internal parameters.

From the graphs depicting the speciation of HyperNEAT run it can be observed, that

the specified desired speciation has been achieved approximately 2 generations before the

10th generation, which evolved individuals with better performance than the hand-wired

solution. I interpret this as correct speciation target setup, because it created space for

evolution of fewer species, rather than creating distinct species, which would reduce the

speed of perfecting other more promising species.

In this experiment, the topology by the HyperNEAT performed better than the hand-

wired solution. The reason for this could be the fact, that the Y-output of the gridworld

was connected to the importance value, which causes the agent to choose the learned

action rather than exploring the world randomly. The learned action caused the agent to

visit the state with the reward more often, which resulted in higher prosperity values of

the Neural Modules and higher fitness of the individual. In the next part, performance

of the algorithm in the bigger gridworld will be evaluated.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 54

generation

0 10 20 30 40 50 60 70 80

fi
tn

e
s
s
 v

a
lu

e

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Maximal fitness in population

Figure 4.18: The maximal fitness in the 80 generations of the Basic Evolutionary Al-

gorithm (blue color) and HyperNEAT (green color) algorithm is depicted.

The size of the population has been set to 50 individuals.

generation

0 10 20 30 40 50 60 70 80

fi
tn

e
s
s
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6
Mean fitness in population

Figure 4.19: The mean fitness in the 80 generations of the Basic Evolutionary Algo-

rithm (blue color) and HyperNEAT algorithm (green color) is depicted.

The size of the population has been set to 50 individuals.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 55

generation

0 10 20 30 40 50 60 70 80

s
p
e
c
ie

s
 c

o
u
n
t

0

5

10

15

20

25

30

35

40

45

50
Number of distinct species in population

Figure 4.20: Figure depicts the number of distinct species in the CPPN population

throughout the evolution. Speciation target has been set to 3.

generation

0 10 20 30 40 50 60 70 80

in
d
iv

id
u
a
ls

 c
o
u
n
t

0

5

10

15

20

25

30

35

40
Amount of individuals in the species

Figure 4.21: The maximal and minimal size of the species in HyperNEAT is depicted.

Blue- maximal specie size, Green -minimal specie size. The size of the

population has been set to 50 individuals and speciation target has been

set to 3.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 56

4.4.3 Experiment 2 - B) Bigger Gridworld

In the second reinforcement learning experiment, the gridworld with bigger size of 100

fields (10× 10), single source of reward and four obstacles has been chosen. The number

of steps of the agent in the environment has been set to 15000 for single evaluation run,

to assure more precise evaluation function values.

Figure 4.22: Gridworld 10 × 10 for Reinforcement Learning Experiment. Yellow -

sources of reward, Black - obstacles, Start - initial position of the agent

in the virtual environment.

This gridworld differs from the smaller version in the size, but also in the number of

reward sources. Instead of two, there is just single reward source which causes the found

fitnesses to be smaller compared to the first smaller gridworld.

The Basic EA converged much faster to the desired value(close to the value generated

by hand-wired setting). The HyperNEAT algorithm has been stuck in the local optima

with low fitness value for 4000 evaluations but once it perturbed to solution with higher

fitness it converged relatively quickly to the value close to the hand-wired setup of the

algorithm.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 57

generation

0 10 20 30 40 50 60 70

fi
tn

e
s
s
 v

a
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Maximal fitness in population(HyperNEAT)

Figure 4.23: The maximal fitness in 70 generations of the HyperNEAT algorithm is

depicted. The size of the population has been set to 100 individuals.

generation

0 10 20 30 40 50 60 70 80

fi
tn

e
s
s
 v

a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6
Maximal fitness in population(Evolutionary Algorithm)

Figure 4.24: The maximal fitness in 70 generations of the Basic Evolutionary Algo-

rithm is depicted. The size of the population has been set to 50 individ-

uals.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 58

generation

0 10 20 30 40 50 60 70

fi
tn

e
s
s
 v

a
lu

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Mean fitness in population(HyperNEAT)

Figure 4.25: The mean fitness in 70 generations of the HyperNEAT algorithm is de-

picted. The size of the population has been set to 100 individuals.

generation

0 10 20 30 40 50 60 70 80

fi
tn

e
s
s
 v

a
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Mean fitness in population(Evolutionary Algorithm)

Figure 4.26: The mean fitness in 70 generations of the Basic Evolutionary Algorithm

is depicted. The size of the population has been set to 50 individuals.

When comparing the mean fitnesses of the populations in both algorithms we can ob-

serve, that Basic EA has much higher mean fitness than HyperNEAT in this experiment.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 59

The reason for this is, that HyperNEAT algorithm explores distinct solutions and does

not disqualify the solutions with low fitness immediately, if they differ from the other

individuals in genotype. This is due to the speciating, which is one of the basic features

of the HyperNEAT algorithm.

generation

0 10 20 30 40 50 60 70

s
p
e
c
ie

s
 c

o
u
n
t

0

10

20

30

40

50

60

70

80

90

100
Number of distinct species in population

Figure 4.27: The species count throughout the evolution in HyperNEAT is depicted.

The size of the population has been set to 100 individuals and speciation

target has been set to 7.

The algorithm converged to the desired species count after 10 generations. The reason,

why desired species count has been set to 7 was, that with the higher number of species,

algorithm evolved very large mutated individuals instead of focusing on perfection of the

concrete specie. On the other hand, the reason for the algorithm being stuck in local

optima for so long could be also insufficient exploration of the variety of the genomes. As

we mentioned earlier, the parameters have been set using the ’trick’ experiment with the

hand-wired configuration. The evaluation function in that case is more precise and differs

greatly from the evaluation in the simulated environment, that means that experiments

are also different and the parameters setting in this case is not entirely precise. At

this point it is therefore difficult to determine, whether the reason for the algorithm to

converge relatively slowly compared to the Basic Evolutionary Algorithm could be in the

selected speciation target.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 60

generation

0 10 20 30 40 50 60 70

in
d
iv

id
u
a
ls

 c
o
u
n
t

0

10

20

30

40

50

60
Amount of individuals in the species

Figure 4.28: The maximal and minimal size of the species in HyperNEAT is depicted.

Blue- maximal specie size, Green -minimal specie size. The size of the

population has been set to 100 individuals and speciation target has been

set to 7.

Gridworld 5× 5

Population size 50 Elitism 0.05

Survival rate(parents %) 0.3 Crossover/Mutation Ration 0.8

Gridworld 10× 10

Population size 100 Elitism 0.05

Survival rate(parents %) 0.3 Crossover/Mutation Ration 0.8

Table 4.3: The chosen parameters for the HyperNEAT algorithm in the Reinforce-

ment Learning experiment. Elitism stands for the percentage of champions

surviving to the next generation.



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 61

4.4.4 Reinforcement Learning Experiments Best Found

Genomes and Discussion

See Fig. 4.15

A B C D

E F G H I J

K L M N

Hand-wired, F = 0.55(Small),0.46(Big)

1 0 0 1

0 0 0 1 0 0

1 0 0 0

HyperNEAT Small Grid World, F = 0.65

1 0 0 1

0 0 0 1 0 0

1 0.26 0 0.98

EA Small Grid World, F = 0.65

0 1 0.94 0

0 0 0 0.948 1 1

0.97 0 0.9 0

HyperNEAT Bigger Grid World, F = 0.48

1 0 0 1

0 0 0 1 0 0

0.93 0 0 0.68

EA Bigger Grid World, F = 0.56

1 0 0.49 1

0 0 0 1 0 1

0.7 0.92 0.02 0

Table 4.4: The Best genomes found in the Grid World Experiments.

HyperNEAT Algorithm, Small Grid World : The motivation output of the phys-

iology module, and the X output of the gridworld are connected correctly to the next

layer of the HANNS, the same way as in the case of hand designed connection. The

reward is connected to the reward input of Q-Lambda module as expected, but in ad-

dition it is connected to the importance input. This does not modify the behavior of

the agent, because once it receives reward, the importance is set to 0 by default. The

Y-output of the gridworld is connected to the Y-input of the Q-Lambda module, which

is correct and in addition it is connected to the importance input, which causes the agent

to execute the learned strategy more often, when he traverses the positions with higher

Y-coordinate. The algorithm has successfully found the valid topology. Moreover, the



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 62

resulting automatically optimized system has better fitness than the manually designed

one.

Basic EA, Small Grid World : The reward output of the physiology module

is connected not just to the reward input, but also to the X and Y inputs of the Q-

Lambda module. This causes the agent to get distracted once it reaches the state with

reward. In the reward state, the importance equals 0 and the agent moves randomly

in the environment, so the behavior of the agant remains the same. The motivation

output of the physiology module is connected similarly to the hand wired version. The

X and Y spatial outputs of the gridworld are connected to the Y and X inputs of the Q-

Lambda module (X → Y, Y → X). This causes the agent to have the reversed axis in his

representation of the surrounding environment, but does not affect his behavior in terms

of moving between the states in the gridworld. X output of the gridworld is connected

to the importance input, which causes the agent to execute the learned strategy when he

is situated in the position of the gridworld with higher X-coordinate. The algorithm has

successfully found the valid topology. The resulting system has better fitness than the

manually designed one, similarly as in the case of HyperNEAT algorithm.

HyperNEAT Algorithm, Bigger Grid World : The output of the physiology

modules are connected according to the hand designed version of the reinforcement learn-

ing system. The outputs of the Grid world are connected to the inputs of the Q-Learning

module as expected, the agent receives correct information about his current position in

the artificial environment. In addition, the Y output of the system is connected to the

importance of the system, which results in committing to the learned behavior, when

situated in the higher Y-coordinate in the simulated environment. Similar pattern has

been observer in the topology found by HyperNEAT in the smaller grid world. The al-

gorithm has successfully found the valid topology and the efficiency of the connections is

comparable to the hand wired topology.

Basic EA, Bigger Grid World : The reward output of the physiology module

is connected to the reward input of the Q-Lambda module, in addition it is connected

to the importance input and Y input of the Q-Lambda module. The connection to the

importance input does not affect the learned behavior, because once the agent receives

reward, the importance is set to 0 by default. The connection to the Y input causes the

distraction of the agent in this round. Agent believes to be situated in the different state,

or even outside of the gridworld. However, because he received reward, his motivation for

movement towards the reward has been reduced to 0 and therefore he performs random

walk in any case. Motivation output of the physiology module is setup correctly. X output



CHAPTER 4. ALGORITHM IMPLEMENTATION AND TESTING 63

of the gridworld is connected purely to the X input of the Q-Lambda module which is

desired. Y output of the gridworld is connected to the Y input of the Q-Lambda module

but also to the X input of the Q-Lamda module. However the weight of this connection

is 1
2

. It appears, that it does not distract the agent significantly, because the modules

still exhibit promising prosperity values resulting in better fitness of the individual than

the hand wired configuration.

When comparing the performance of the algorithms it has been observed, that the

Basic EA algorithm outperforms the HyperNEAT algorithm by producing higher pros-

perity values of the modules in the larger gridworld. On the other hand the topologies

evolved by HyperNEAT intuitively appear to be more correct, because they are much

closer to the hand wired configuration of this HANNS. In case of the smaller gridworld,

both algorithms found solutions with similar fitnesses, but the HyperNEAT solution is

again closer to the hand wired configuration. The HyperNEAT algorithm also converged

faster to the best found solution than the Basic EA. While bearing in mind that the

HyperNEAT’s benefits would manifest more in bigger topologies with more connections,

this is still a good result (compared to the Basic EA).

4.5 Conducted Experiments Discussion &

Conclusion

I have successfully conducted several experiments on the use of HyperNEAT for evolving

HANNS. Different substrate setting have been evaluated and the effect of input and out-

put spreading on the evolution has been observed. In the XOR experiment, it turned out

that the simplest is the most efficient solution. Automatic ordering of the neural inputs

and outputs resulted in the smoother evolution with faster results. On the other hand, in

case of the Reinforcement Learning Experiment, spreading the inputs and outputs within

the sub-matrix of the substrate happened to be more efficient. The CPPN networks gen-

erated separated patterns in the separated parts of the space, which resulted in better

flexibility and independence of the weights. To summarize the findings, it is not always

clear, which way of spreading of the inputs and outputs is better, the correct dispersion

has to be determined depending on the concrete problem to be solved. In order to deepen

our knowledge about the efficient settings in HyperNEAT for HANNS, more experiments

should be conducted in the future.



Chapter 5

Thesis Conclusion and Contributions

In the final chapter of the thesis, I will summarize the thesis conclusions and the con-

tribution to the development of the hybrid artificial neural network systems. I have

successfully fulfilled all the goals stated in the thesis assignment:

• I have studied the principles of optimization of ANN based on the HyperNEAT al-

gorithm in depth theoretically, but also had to examine the concrete chosen im-

plementation in detail in order to extend it. By going through several articles on

this topic mainly from the author of the HyperNEAT algorithm (Stanley, 2009),

but also from others, who introduced novel thoughts into this domain, the strong

theoretical background has been created. This part is described comprehensively

in the 2nd Chapter of this thesis.

• The modification of this algorithm has been designed for the purpose of learning the

topology of arbitrary HANNS. Since this is very general task, several possibilities of

algorithm extensions have been examined and described in detail. For the simpler

HANNS, simpler modifications have been designed to achieve efficiency. For com-

plex HANNS, more general methodology has been found. To assure better insight

into this problem, all the key ideas have been discussed with my thesis supervisor

Jaroslav Vitku.

• The algorithm has been successfully implemented to serve for the purpose of evolv-

ing of the topology of HANNS. The implementation extended open source imple-

mentation of HyperNEAT algorithm (Coleman, 2010) chosen due to its extensibility

and efficiency. The extended implementation became part of the framework for de-

velopment of HANNS called NengoROS (Vitku, 2015). Within this framework, it

64



CHAPTER 5. THESIS CONCLUSION AND CONTRIBUTIONS 65

can be tested on the capabilities of interconnecting modules for hybrid modular

systems.

• The algorithm has been tested on several experiments selected and designed by my

thesis supervisor. The tasks in this experiments have been chosen from the simpler

to the more difficult ones to determine the performance of the algorithm in vari-

ous environments and problems. All the conducted experiments were compared to

the to the Basic EA (standard evolutionary algorithm with direct representation of

weights) for learning the topology of the HANNS. All the experiments are available

on the attached DVD-ROM together with the extended HyperNEAT implemen-

tation incorporated into the NengoROS framework. In addition, the NengoROS

project together with this implementation can be pulled from the NengoROS repos-

itory (Vitku, 2015), where you can find the manual for installing the environment

for concrete experiments on the linux-based operating system.

The main contributions of the thesis are in the development of novel methods for

learning the connections of arbitrary HANNS using the HyperNEAT algorithm. All of

the methods have been evaluated and results proved, that the algorithm is capable of

optimizing the topology of the system, even when the topology does not exhibit the

geometrical properties, which increases the performance of the HyperNEAT algorithm.

By implementing this algorithm into the Framework of Hybrid Artificial Neural Network

Systems I have created background for conducting more promising experiments. In recent

years, the focus on the research and development of these systems has increased rapidly.

Because these methods have been designed to work in general with arbitrary HANNS,

they can be further tested and utilized on the various tasks.



Bibliography

Auda G., Kamel, M. (1999). Modular neural networks: a survey, International Journal

of Neural Systems vol. 9: 129–151.

Bennani, Y. (1995). A modular and hybrid connectionist system for speaker identification,

Neural Computation 7: 791–798.

Bentley, P. J. and Kumar, S. (1999). The ways to grow designs: A comparison of em-

bryogenies for an evolutionary design problem., San Francisco: Kaufmann.

Churchland, P. M. (1986). Some reductive strategies in cognitive neurobiology.

Coleman, O. (2010). Java hyperneat implementation.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function, Mathe-

matics of Control, Signals, and Systems 2(4): 303–314.

Drchal, J., Koutnik, J. and Snorek, M. (2009). Hyperneat controlled robots learn how

to drive on roads in simulated environment, 2009 IEEE Congress on Evolutionary

Computation pp. 1087–1092.

Foo, Y. and Szu, H. (1989). Solving large-scale optimization problems by divide-and-

conquer neural networks, Int. Joint Conf. Neural Networks 1: 507–511.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multi-

modal function optimization, Proceedings of the Second International Conference on

Genetic Algorithms pp. 148–154.

Gruau, F. (1993). Genetic synthesis of modular neural networks, Proceedings of the Fifth

International Conference on Genetic Algorithms p. 318–325.

H. de Garis, C. Shuo, B. G. and Ruiting, L. (2010). A world survey of artificial brain

projects, part 1: Large-scale brain simulations, Neurocomput. 74: 3–29.

66



BIBLIOGRAPHY 67

Hrycej, T. (1992). Modular learning in neural networks: A modularized approach to

classification.

Mcgarry (1999). Hybrid neural systems: from simple coupling to fully integrated neural

networks, Neural Computing Surveys 2: 62–93.

Murre, J. (1992). Learning and Categorization in Modular Neural Networks, Harvester-

Wheatcheaf.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng,

A. (2009). Ros: an open-source robot operating system, ICRA Workshop on Open

Source Software . http://pub1.willowgarage.com/ konolige/cs225B/docs/quigley-

icra2009-ros.pdf.

Radcliffe, N. J. (1993). Genetic set recombination and its application to neural network

topology optimisation. , 1(1):67–90., Neural Computing and Applications 1: 67–90.

S. Johannes, B. Wieringa, M. M. and Munte, T. (1996). Hierarchical visual stimuli: Elec-

trophysiological evidence for separating left hemispheric global and local processing

mechanisms in humans, Neuroscience Lett. 210(2): 111–114.

S. Wermter, V. W. (1997). Screen: learning a flat syntactic and semantic spoken language

analysis using artificial neural networks, Journal of Artificial Intelligence Research

6: 35–85.

Spears, W. (1995). Speciation using tag bits, In Handbook of Evolutionary Computation

.

Stanley (2002). Evolving neural networks through augmenting topologies, Evolutionary

Computation 2: 100–127.

Stanley (2006). Exploiting regularity without development, Proceedings of the 2006 AAAI

Fall Symposium on Developmental Systems. .

Stanley, David D’Ambrosio, J. G. (2009). A hypercube-based indirect encoding for evolv-

ing large-scale neural networks, Artificial Life journal 15.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstrac-

tion of development, Genetic Programming and Evolvable Machines Special Issue on

Developmental Systems 1: 31.



BIBLIOGRAPHY 68

Stanley, K. O. (n.d.). Dept. of eecs, computer science division.

URL: webpage: http://eplex.cs.ucf.edu/hyperNEATpage/

Stanley, K. O., R. J. and Miikkulainen, R. (2004). Exploiting morphological conventions

for genetic reuse., In Proceedings of the Genetic and Evolutionary Computation Con-

ference .

Vapnik, V. and Chervonenkis, A. (1971). On the uniform convergence of relative fre-

quencies of events to their prababilities, Theory of Probability and its Applications

16: 264–280.

Vitku, J. (2015). Nengoros project online.

URL: https://nengoros.wordpress.com/

Vitku, J. and Nahodil, P. (2014). Towards evolutionary design of complex systems in-

spired by nature, Acta Polytechnica 54: 367–377.

Zigmond, Bloom, L. R. and Squire. (1999). Fundamental Neuroscience, London: Aca-

demic Press.


